Heart Disease Fact Sheet CIRM funds many projects seeking to better understand heart disease and to translate those discoveries into new therapies. ## Description Heart disease strikes in many forms, but collectively it causes one third of all deaths in the U.S. Many forms of heart disease have a common result—cardiomyopathy. While this is commonly called congestive heart failure (CHF), it is really just the heart becoming less efficient due to any number of causes, but the most common is loss of functioning heart muscle due to the damage caused by a heart attack. An estimated 4.8 million Americans have CHF, with 400,000 new cases diagnosed each year. Half die within five years. Numerous clinical trials are underway testing a type of stem cell found in bone marrow, called mesenchymal stem cells or MSCs, to see if they are effective in treating the form of CHF that follows a heart attack. While those trials have shown some small improvements in patients the researchers have not found that the MSCs are creating replacement heart muscle. They think the improvements may be due to the MSCs creating new blood vessels that then help make the existing heart muscle healthier, or in other ways strengthening the existing tissue. California's stem cell agency has numerous awards looking into heart disease (the full list is below). Most of these involve looking for ways to create stem cells that can replace the damaged heart muscle, restoring the heart's ability to efficiently pump blood around the body. Some researchers are looking to go beyond transplanting cells into the heart and are instead exploring the use of tissue engineering technologies, such as building artificial scaffolds in the lab and loading them with stem cells that, when placed in the heart, may stimulate the recovery of the muscle. Other CIRM-funded researchers are working in the laboratory, looking at stem cells from heart disease patients to better understand the disease and even using those models to discover and test new drugs to see if they are effective in treating heart disease. Other researchers are trying to make a type of specialized heart cell called a pacemaker cell, which helps keep a proper rhythm to the heart's beat. We also fund projects that are trying to take promising therapies out of the laboratory and closer to being tested in people. In some cases, these awards also fund the early phase clinical trials to show that they are safe to use and, in some cases, show some signs of being effective. # **Clinical Stage Programs** ## Capricor (Heart failure and Duchenne Muscular Dystrophy-related heart failure) The company is using donor cells derived from heart stem cells developed by Cedars-Sinai to treat patients developing heart failure after a heart attack. In early studies the cells appear to reduce scar tissue, promote blood vessel growth and improve heart function. • Read about the team's progress In a second trial, the company is using the same donor cells derived from heart stem cells to treat patients developing heart failure due to Duchenne Muscular Dystrophy. In early studies the cells appear to reduce scar tissue, promote blood vessel growth and improve heart function. · Read about the team's progress ### Cedars-Sinai Medical Center (Cardiomyopathy) This team developed a way to isolate some heart-specific stem cells that are found in adult heart muscle. They use clumps of cells called Cardiospheres to reduce scarring caused by heart attacks. Initially they used cells obtained from the patient's own heart but they later developed methods to obtain the cells they need from donor organs, which allows the procedure to become an off-the-shelf-therapy, meaning it can be available when and where the patient needs it rather than having to create it new each time. The company, working with the Cedars-Sinai team, received FDA approval to begin a clinical trial in June 2012. • Read about the team's progress # **Stanford School of Medicine (Heart Failure)** This team plans to turn embryonic stem cells into what are called cardiomyocytes, the kind of cells that can become heart muscle. They plan to develop methods for producing sufficient quantities for clinical therapy and to do all the laboratory work and preliminary testing needed to gain FDA approval of a clinical trial by the close of the grant. They are proposing to carry out a trial with patients who have disease that is so advanced that they are on a waiting list for heart transplants. • Read about the team's progress Video: Bruce Conklin of the Gladstone Institute of Cardiovascular Disease talks about using stem cells to screen drugs for heart side effects # **CIRM Grants Targeting Heart Disease** | Researcher
name | Institution | Grant Title | Grant Type | Approved funds | |--------------------|---|---|---|----------------| | Krishna
Shenoy | Stanford
University | Technology for hESC-Derived Cardiomyocyte Differentiation
and Optimization of Graft-Host Integration in Adult
Myocardium | SEED Grant | \$572,891 | | Andrew
Putnam | University of
California, Irvine | A Novel Engineered Niche to Explore the Vasculogenic
Potential of Embryonic Stem Cells | New Faculty I | \$395,764 | | Benoit
Bruneau | Gladstone
Institutes, J.
David | Epigenetic regulation of human cardiac differentiation | Basic Biology IV | \$1,568,148 | | Joseph Gold | City of Hope,
Beckman
Research
Institute | Development of a scalable, practical, and transferable GMP-compliant suspension culture-based differentiation process for cardiomyocyte production from human embryonic stem cells. | Tools and
Technologies III | \$891,518 | | Sonja
Schrepfer | University of
California, San
Francisco | Hypo-immunogenic cardiac patches for myocardial regeneration | Inception -
Discovery Stage
Research Projects | \$238,500 | | | | | | | | John
Cashman | Human
BioMolecular
Research
Institute | Discovering Potent Molecules with Human ESCs to Treat
Heart Disease | SEED Grant | \$688,274 | |----------------------|---|---|---|-------------| | Irving
Weissman | Stanford
University | Antibody tools to deplete or isolate teratogenic, cardiac, and blood stem cells from hESCs | Tools and
Technologies II | \$1,463,814 | | Deborah Lieu | University of
California,
Davis | Induction of Pluripotent Stem Cell-Derived Pacemaking Cells | Basic Biology IV | \$1,333,689 | | Shaochen
Chen | University of
California, San
Diego | Development of 3D Bioprinting Techniques using Human
Embryonic Stem Cells Derived Cardiomyocytes for Cardiac
Tissue Engineering | Tools and
Technologies III | \$1,368,517 | | Kevin Healy | University of
California,
Berkeley | Human Cardiac Chip for Assessment of Proarrhythmic Risk | Quest - Discovery
Stage Research
Projects | \$899,595 | | Huei-sheng
Chen | Sanford-
Burnham
Medical
Research
Institute | Development of Neuro-Coupled Human Embryonic Stem Cell-
Derived Cardiac Pacemaker Cells. | SEED Grant | \$695,680 | | Deepak
Srivastava | Gladstone
Institutes, J.
David | Mechanisms of Direct Cardiac Reprogramming | Basic Biology III | \$1,572,380 | | Sheng Ding | Gladstone
Institutes, J.
David | A new paradigm of lineage-specific reprogramming | Basic Biology IV | \$1,568,395 | | Joseph Wu | Stanford
University | Macaca mulatta as advanced model for predictive preclinical testing of engineered cardiac autografts and allografts | Tools and
Technologies III | \$1,689,744 | | Mark Mercola | Stanford
University | Multipotent Cardiovascular Progenitor Regeneration of the Myocardium after MI | Quest - Discovery
Stage Research
Projects | \$1,809,234 | | Michelle
Khine | University of
California, Irvine | Micro Platform for Controlled Cardiac Myocyte Differentiation | SEED Grant | \$156,426 | | Ali Nsair | University of
California, Los
Angeles | Characterization and Engineering of the Cardiac Stem Cell
Niche | Basic Biology III | \$1,127,741 | | Eduardo
Marbán | Cedars-Sinai
Medical Center | Mechanism of heart regeneration by cardiosphere-derived cells | Basic Biology IV | \$1,367,604 | | Joseph Wu | Stanford
University | Drug Discovery & Stem Cell Models for Cardiovascular
Disease Conference | Conference II | \$7.500 | | Deborah Lieu | University of
California,
Davis | Microenvironment for hiPSC-derived pacemaking cardiomyocytes | Quest - Discovery
Stage Research
Projects | \$2,042,728 | | | | | | | | Jane
Lebkowski | Geron
Corporation | Preclinical Development and First-In-Human Testing of GRNCM1 in Advanced Heart Failure | Disease Team
Therapy Planning
I | \$0 | |--------------------|---|---|---|-------------| | Phillip Yang | Stanford
University | In Vivo Molecular Magnetic Resonance Imaging of Human
Embryonic Stem Cells in Murine Model of Myocardial
Infarction | SEED Grant | \$629,952 | | Farah Sheikh | University of
California, San
Diego | Molecular Mechanisms Underlying Human Cardiac Cell
Junction Maturation and Disease Using Human iPSC | Basic Biology III | \$1,341,955 | | Ali Nsair | University of
California, Los
Angeles | Human Induced Pluripotent Stem Cell-Derived Cardiovascular Progenitor Cells for Cardiac Cell Therapy. | New Faculty
Physician
Scientist | \$2,316,894 | | Linda
Cambier | Cedars-Sinai
Medical Center | Exosomal Y-RNAs as mediators of bioactivity of cardiac-
derived cell therapy | Inception -
Discovery Stage
Research Projects | \$181,063 | | Benoit
Bruneau | Gladstone
Institutes, J.
David | Induction of cardiogenesis in pluripotent cells via chromatin remodeling factors | New Faculty II | \$2,723,653 | | Sean Wu | Stanford
University | Elucidating Molecular Basis of Hypertrophic Cardiomyopathy with Human Induced Pluripotent Stem Cells | Basic Biology III | \$1,260,537 | | Reza Ardehali | University of
California, Los
Angeles | Preclinical evaluation of human embryonic stem cell-derived cardiovascular progenitors in a large animal model | New Faculty
Physician
Scientist | \$2,930,388 | | Phillip Yang | Stanford
University | Activation of patient-specific endogenous myocardial repair through the exosomes generated from the hypoxic iPSC-derived cardiomyocytes (iCMs). | Inception -
Discovery Stage
Research Projects | \$234,619 | | Ching-Pin
Chang | Stanford
University | VEGF signaling in adventitial stem cells in vascular physiology and disease | New Faculty II | \$3,005,695 | | John Laird | University of
California,
Davis | Phase I study of IM Injection of VEGF Producing MSC for the
Treatment of Critical Limb Ischemia | Disease Team
Therapy Planning | \$76,066 | | Joseph Wu | Stanford
University | Tissue Collection for Accelerating iPSC Research in Cardiovascular Diseases | Tissue Collection
for Disease
Modeling | \$1,291,832 | | Arjun Deb | University of
California, Los
Angeles | Targeting progenitors in scar tissue to reduce chronic scar burden | Inception -
Discovery Stage
Research Projects | \$230,400 | | Kara
McCloskey | University of
California,
Merced | Building Cardiac Tissue from Stem Cells and Natural Matrices | New Faculty II | \$1,656,083 | | Robert
Robbins | Stanford
University | Human Embryonic Stem Cell-Derived Cardiomyocytes for Patients with End Stage Heart Failure | Disease Team
Therapy Planning | \$73,030 | | Thomas
Novak | Cellular
Dynamics
International | Generation and characterization of high-quality, footprint-free human induced pluripotent stem cell lines from 3,000 donors to investigate multigenic diseases | hiPSC Derivation | \$16,000,000 | |----------------------|--|--|---|--------------| | Deepak
Srivastava | Gladstone
Institutes, J.
David | Use of Human iPSC-derived Endothelial Cells for Calcific
Aortic Valve Disease Therapeutics | Quest - Discovery
Stage Research
Projects | \$2,400,048 | | Irving
Weissman | Stanford
University | Prospective isolation of hESC-derived hematopoietic and cardiomyocyte stem cells | Comprehensive
Grant | \$2,471,386 | | Deepak
Srivastava | Gladstone
Institutes, J.
David | Direct Cardiac Reprogramming for Heart Regeneration | Early
Translational III | \$5,795,871 | | Deborah
Requesens | Coriell Institute
for Medical
Research | The CIRM Human Pluripotent Stem Cell Biorepository – A
Resource for Safe Storage and Distribution of High Quality
iPSCs | hPSC Repository | \$9,942,175 | | Deborah
Ascheim | Capricor, Inc | Allogeneic Cardiosphere-Derived Cells for Duchenne
Muscular Dystrophy Cardiomyopathy | Clinical Trial
Stage Projects | \$3,376,259 | | Randall Lee | University of
California, San
Francisco | Embryonic Stem Cell-Derived Therapies Targeting Cardiac Ischemic Disease | Comprehensive
Grant | \$2,424,353 | | Joseph Wu | Stanford
University | Heart Repair with Human Tissue Engineered Myocardium | Early
Translational III | \$4,396,738 | | John
Cashman | Human
BioMolecular
Research
Institute | Improving Existing Drugs for Long QT Syndrome type 3 (LQT3) by hiPSC Disease-in-Dish Model | Early
Translational IV | \$6,361,369 | | Michael Lewis | Cedars-Sinai
Medical Center | Pulmonary Arterial Hypertension Treated with Cardiosphere-
Derived Allogeneic Stem Cells | Clinical Trial
Stage Projects | \$7.354.772 | | Harold
Bernstein | University of
California, San
Francisco | Modeling Myocardial Therapy with Human Embryonic Stem
Cells | Comprehensive
Grant | \$2,134,694 | | Walter Boyd | University of
California,
Davis | Extracellular Matrix Bioscaffold Augmented with Human Stem
Cells for Cardiovascular Repair | Early
Translational III | \$4,631,754 | | Christian
Metallo | University of
California, San
Diego | Metabolic regulation of cardiac differentiation and maturation | Basic Biology V | \$1,124,834 | | Deepak
Srivastava | Gladstone
Institutes, J.
David | Direct Cardiac Reprogramming for Regenerative Medicine | Quest - Discovery
Stage Research
Projects | \$2,400,048 | | | University of | Human Cardiovascular Progenitors, their Niches and Control | Basic Biology I | \$917,667 | | Christopher
Zarins | Stanford
University | Engineering a Cardiovascular Tissue Graft from Human
Embryonic Stem Cells | Comprehensive
Grant | \$2,454,490 | |-----------------------|---|--|--|--------------| | Eric Adler | University of
California, San
Diego | Identification of Novel Therapeutics for Danon Disease Using an iPS Model of the Disease | Early
Translational III | \$1,701,575 | | Eduardo
Marbán | Cedars-Sinai
Medical Center | {REDACTED} Heart Disease Regenerative Medicine Team Planning Award | Disease Team
Planning | \$38,980 | | Brian Black | University of
California, San
Francisco | Weinstein Cardiovascular Development Conference | Conference | \$35,000 | | Eduardo
Marbán | Cedars-Sinai
Medical Center | Autologous cardiac-derived cells for advanced ischemic cardiomyopathy | Disease Team
Research I | \$5,560,232 | | Deepak
Srivastava | Gladstone
Institutes, J.
David | microRNA Regulation of Cardiomyocyte Differentiation from
Human Embryonic Stem Cells | Comprehensive
Grant | \$2,994,719 | | Yang Xu | University of
California, San
Diego | Human ES cell based therapy of heart failure without allogenic immune rejection | Early
Translational III | \$1,857,600 | | Mark Mercola | Sanford-
Burnham
Medical
Research
Institute | "Stem Cell Therapies for Heart Failure" | Disease Team
Planning | \$44.450 | | Alice Tarantal | University of
California,
Davis | 11th Annual Gene Therapy Symposium for Heart, Lung, and
Blood Diseases | Conference | \$16,850 | | Bruce Conklin | Gladstone
Institutes, J.
David | Induced Pluripotent Stem Cells for Cardiovascular Diagnostics | New Cell Lines | \$1,708,560 | | Mark Mercola | Sanford-
Burnham
Medical
Research
Institute | Chemical Genetic Approach to Production of hESC-derived Cardiomyocytes | Comprehensive
Grant | \$2,832,000 | | Rachel Smith | Capricor, Inc | Allogeneic Cardiac-Derived Stem Cells for Patients Following a Myocardial Infarction | Disease Team
Therapy
Development -
Research | \$14,405,857 | | Michelle
Khine | University of
California, Irvine | Micro Platform for Controlled Cardiac Myocyte Differentiation | SEED Grant | \$193,700 | | Alice Tarantal | University of
California,
Davis | gth Annual Gene Therapy Symposium for Heart, Lung and
Blood Diseases | Conference | \$12,000 | | | | | | | | | | | | | | Michael
Longaker | Stanford
University | Derivation and analysis of pluripotent stem cell lines with inherited TGF-b mediated disorders from donated IVF embryos and reprogrammed adult skin fibroblasts | New Cell Lines | \$1,406,636 | |--------------------------|---|---|--|--------------| | Patrick
McDonough | Vala Sciences,
Inc. | Optimization in the Identification, Selection and Induction of
Maturation of Subtypes of Cardiomyocytes derived from
Human Embryonic Stem Cells | Tools and
Technologies I | \$870,717 | | Joseph Wu | Stanford
University | Human Embryonic Stem Cell-Derived Cardiomyocytes for Patients with End Stage Heart Failure | Disease Team
Therapy
Development -
Research | \$19,060,330 | | Todd
McDevitt | Gladstone
Institutes, J.
David | Engineering microscale tissue constructs from human pluripotent stem cells | Research
Leadership | \$5,884,058 | | Alice Tarantal | University of
California,
Davis | 10th Annual Gene Therapy Symposium for Heart, Lung, and
Blood Diseases | Conference | \$18,300 | | Sylvia Evans | University of
California, San
Diego | Specification of Ventricular Myocyte and Pacemaker
Lineages Utilizing Human Embryonic Stem Cells | SEED Grant | \$585,600 | | Mohammad
Pashmforoush | University of
Southern
California | Transcriptional Regulation of Cardiac Pacemaker Cell
Progenitors | New Faculty I | \$2,816,578 | | Huei-sheng
Chen | Sanford-
Burnham
Medical
Research
Institute | Studying Arrhythmogenic Right Ventricular Dysplasia with patient-specific iPS cells | Basic Biology IV | \$1,579,250 | | Michael
Snyder | Stanford
University | Center of Excellence for Stem Cell Genomics - Stanford | Genomics
Centers of
Excellence
Awards (R) | \$22,796,609 | | Joseph Wu | Stanford
University | A Novel, Robust and Comprehensive Predictive Tool Using
Human Disease-Specific Induced Pluripotent Stem Cells for
Preclinical Drug Screening | Tool Translational
Research Projects | \$1,000,000 | | | | | | | # **CIRM Heart Disease Videos** Growing Stem Cell Research in California: Todd McDevitt Lab, Gladstone Institutes Heart disease: Progress toward stem cell therapies, a live Google Hangout Webinar: Stem Cell Clinical Trial for Heart Disease - Lessons Learned | Eduardo Marbán Yen Bui, Gladstone Institutes -CIRM Stem Cell #SciencePitch Deepak Srivastava, Gladstone Institutes - CIRM Stem Cell #SciencePitch Spotlight on Stem Cell Advances in Pediatric Heart Disease: A Change of Heart Spotlight on Stem Cell Advances in Heart Disease: Generating Muscle within an Existing Heart Joshua's Heart Story: Pediatric Heart Disease and the Promise of Stem Cell Advances Stem Cell Clinical Trial for Heart Failure: Eduardo Marbán - CIRM Spotlight on Disease Cardiovascular Therapies: Spotlight on Stem Cell Research - Welcoming Remarks Cardiovascular Therapies: Spotlight on Stem Cell Research - W. Douglas Boyd Cardiovascular Therapies: Spotlight on Stem Cell Research - Yung-Wei Chi Cardiovascular Therapies: Spotlight on Stem Cell Research - Jeanette Owens Valentine's Day Stem Cell Wish: Mending Broken Hearts Stem Cell-Derived Heart Cells: Bruce Conklin - CIRM Science Writer's Seminar ### Resources - Blogs on heart disease research from the CIRM Stem Cellar - NIH: Heart Failure Information - Find a clinical trial near you: NIH Clinical Trials database - American Heart Association - · National Heart, Lung and Blood Institute - CDC: Heart Disease # Find Out More: Stem Cell FAQ | Stem Cell Videos | What We Fund Source URL: https://www.cirm.ca.gov/our-progress/disease-information/heart-disease-fact-sheet